User-loaded SlipChip for equipment-free multiplexed nanoliter-scale experiments.
نویسندگان
چکیده
This paper describes a microfluidic approach to perform multiplexed nanoliter-scale experiments by combining a sample with multiple different reagents, each at multiple mixing ratios. This approach employs a user-loaded, equipment-free SlipChip. The mixing ratios, characterized by diluting a fluorescent dye, could be controlled by the volume of each of the combined wells. The SlipChip design was validated on an approximately 12 nL scale by screening the conditions for crystallization of glutaryl-CoA dehydrogenase from Burkholderia pseudomallei against 48 different reagents; each reagent was tested at 11 different mixing ratios, for a total of 528 crystallization trials. The total consumption of the protein sample was approximately 10 microL. Conditions for crystallization were successfully identified. The crystallization experiments were successfully scaled up in well plates using the conditions identified in the SlipChip. Crystals were characterized by X-ray diffraction and provided a protein structure in a different space group and at a higher resolution than the structure obtained by conventional methods. In this work, this user-loaded SlipChip has been shown to reliably handle fluids of diverse physicochemical properties, such as viscosities and surface tensions. Quantitative measurements of fluorescent intensities and high-resolution imaging were straighforward to perform in these glass SlipChips. Surface chemistry was controlled using fluorinated lubricating fluid, analogous to the fluorinated carrier fluid used in plug-based crystallization. Thus, we expect this approach to be valuable in a number of areas beyond protein crystallization, especially those areas where droplet-based microfluidic systems have demonstrated successes, including measurements of enzyme kinetics and blood coagulation, cell-based assays, and chemical reactions.
منابع مشابه
Nanoliter multiplex PCR arrays on a SlipChip.
The SlipChip platform was tested to perform high-throughput nanoliter multiplex PCR. The advantages of using the SlipChip platform for multiplex PCR include the ability to preload arrays of dry primers, instrument-free sample manipulation, small sample volume, and high-throughput capacity. The SlipChip was designed to preload one primer pair per reaction compartment and to screen up to 384 diff...
متن کاملDigital isothermal quantification of nucleic acids via simultaneous chemical initiation of recombinase polymerase amplification reactions on SlipChip.
In this paper, digital quantitative detection of nucleic acids was achieved at the single-molecule level by chemical initiation of over one thousand sequence-specific, nanoliter isothermal amplification reactions in parallel. Digital polymerase chain reaction (digital PCR), a method used for quantification of nucleic acids, counts the presence or absence of amplification of individual molecules...
متن کاملMultiparameter screening on SlipChip used for nanoliter protein crystallization combining free interface diffusion and microbatch methods.
This paper describes two SlipChip-based approaches to protein crystallization: a SlipChip-based free interface diffusion (FID) method and a SlipChip-based composite method that simultaneously performs microbatch and FID crystallization methods in a single device. The FID SlipChip was designed to screen multiple reagents, each at multiple diffusion equilibration times, and was validated by scree...
متن کاملSlipChip for immunoassays in nanoliter volumes.
This article describes a SlipChip-based approach to perform bead-based heterogeneous immunoassays with multiple nanoliter-volume samples. As a potential device to analyze the output of the chemistrode, the performance of this platform was tested using low concentrations of biomolecules. Two strategies to perform the immunoassay in the SlipChip were tested: (1) a unidirectional slipping method t...
متن کاملDigital Nucleic Acid Amplification on a Slipchip
This presentation will describe a recently developed SlipChip based microfluidic platform to perform digital nucleic acid amplification in a simple and low-cost format. Samples can be introduced into the SlipChip by pipetting without the use of complex instruments, and thousands of nanoliter volume compartments can be generated by simple slipping. A “yes-or-no” digital readout of end-point fluo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the American Chemical Society
دوره 132 1 شماره
صفحات -
تاریخ انتشار 2010